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A B S T R A C T   

Clostridium carboxidivorans can use syngas to produce acids and alcohols. However, simulating gas fermentation 
dynamics remains challenging. This study employed data transformation and machine learning (ML) approaches 
to predict syngas fermentation behavior. Syngas composition and fermentative metabolite concentrations (fea-
tures) were paired with the production rates (prediction targets) of acetate, ethanol, butyrate, and butanol at 
each time point. This transformation avoided the use of time as a feature. Data augmentation by polynomial 
smoothing of experimental measurements was used to create a database for supervised learning of 836 rate 
instances from 10 gas compositions. Seven families of ML algorithms were compared, including neural networks, 
support vector machines, random forests, elastic nets, lasso regressors, k-nearest neighbors, and Bayesian ridge 
regressors. These algorithms predicted production rates for training data with Pearson correlation coefficients 
(R2 > 0.9), but they showed poorer performance for predicting unseen test data. Among the algorithms, random 
forests and support vector machines produced the most accurate predictions for the test data, which could 
regenerate product concentration curves (R2 

≈ 0.85). In contrast, neural networks had a higher risk of over-
fitting. Additionally, ML-based feature importance analysis highlighted the significant impacts of CO and H2 on 
alcohol production, which offersguidance for model predictive control. Together, these findings can help direct 
future applications of ML algorithms to complex bioprocesses with limited data.   

1. Introduction 

Biofuels and chemicals can be produced from lignocellulosic biomass 
via a thermochemical decomposition to syngas (CO, CO2, and H2) fol-
lowed by microbial syngas fermentation. Compared to the Fischer- 
Tropsch process, syngas fermentation has low capital and environ-
mental costs [10,15]. Modeling approaches are necessary to optimize 
syngas fermentation. Fermentation engineers favor model predictive 
control (MPC) because its control speed and process dynamics are better 
than traditional proportional-integral-derivative controls [23]. Howev-
er, MPC requires quality kinetic models to predict growth rates. These 
models are typically complex since syngas fermentation performance is 
affected by gas-to-liquid mass transfer, cell biosynthesis capability, 
syngas composition, gas flow rate, product inhibitions, and metabolic 

shifting between acetogenic and solventogenic stages [2,17,20,26]. 
Extensive experiments are required to calibrate a model’s process pa-
rameters (e.g., gas solubility and consumptions). It is challenging to 
incorporate all influential factors and complex reaction mechanisms into 
kinetic-based fermentation models; therefore, semi-empirical power--
law models have been developed. These models describe the nonlinear 
effects of syngas components on production rates, but their equations 
are often stiff when simulating new conditions [25]. 

Machine learning (ML) has emerged as a viable black-box method for 
discovering novel relationships in multivariate systems. ML can predict 
complex cellular processes without mechanistic equations that explicitly 
link input and output variables [13]. Some examples of machine 
learning models applied to biological processes include an artificial 
neural network that was used to optimize simultaneous hydrolysis and 
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fermentation conditions [9], a genetic algorithm that was used for 
model predictive control of fed-batch yeast culture [16], and a support 
vector machine that was used to optimize lysine fermentation [31,32]. 
Additionally, deep reinforcement learning has been used to control 
microbial co-cultures [27], a k-nearest neighbors (kNN) model was 
developed to predict multi-step anaerobic digester efficiency [31,32], 
and an artificial neural network was applied to accurately estimate the 
flow rate of biogas from agricultural substrates [1]. Also, ML based on 
yeast morphology and ultrasonic measurements was used to predict and 
control alcohol fermentations [3,12], and hybrid mechanistic and ML 
models were shown to improve predictions of fermentation pH [14] and 
to refine kinetic parameters in industrial-scale fermentation processes 
[24]. 

Still, the application of ML models to cases with limited training data 
is a recurring challenge. Two approaches that have had success in this 
domain are transfer learning [21] and in silico data augmentation [28]. 
Moreover, various ML studies have investigated the change rate of dy-
namic bioprocesses [6,7,19], and deep learning techniques, such as long 
short-term memory (LSTM), have been used to decipher complex sys-
tems [11]. In this research, ML was used to determine the production 
rate of four products from a non-acetone-butanol-ethanol fermentation 
Clostridium species [29,30]. Syngas fermentation and product analyses 
are costly, and therefore we used a limited experimental data set for ML 
training and testing. This study addressed three questions: how can 
“small experimental data” be used to support quality ML predictions of 
dynamic syngas fermentations? Which ML algorithm is the best for 
syngas fermentation predictions? How can our analysis guide future ML 
projects? 

This study employed four steps to facilitate ML analysis of dynamic 
syngas fermentations. First, a database was compiled, and the 

fermentation curves were smoothed via a polynomial function which 
introduced additional training and testing data via interpolation [22]. 
Second, data transformation was performed by converting time-course 
product concentrations to ML features and production rates. This step 
removed the temporal dimension and augmented the training data. 
Third, seven families of ML algorithms were tested, including neural 
networks (NNs), support vector machines (SVMs), random forests (RFs), 
elastic nets (ENs), lasso regressors (LAs), k-nearest neighbors regressors 
(kNNs), and Bayesian ridge regressors (BRs) [39]. Fourth, the rate-based 
ML models were used to predict time-course concentration curves under 
specified fermentation conditions. In general, small experimental data 
and dynamic systems limit ML applicability, but proper data trans-
formation and ML algorithms were able to effectively improve model 
predictions [8]. 

2. Materials and methods 

2.1. Strain, medium, bioreactor cultures, and product analysis 

All fermentations conducted in this study used Clostridium carbox-
idivorans P7 (ATCC-BAA624), and seed cultures were prepared following 
a method described in a previous report [38]. This method involved 
growing seed cultures in anaerobic serum vials with P7 medium, vita-
mins, cysteine-sulfide reducing agent, and CO gas. The syngas fermen-
tation runs in this study were done following a procedure described in a 
previous paper [30]. In brief, the seed culture was inoculated into an 
Applikon Mini Bioreactor at 10 % of the total fermentation volume. The 
reactors initially contained P7 medium with 4 g/L glucose to shorten 
syngas fermentation time. The cultures were grown at 37 ◦C with 500 
rpm agitation. Syngas flow began after glucose in the medium was 

Table 1 
Summary of syngas fermentation experimental outcomes. The columns on the right side of the table display the concentration of acetate, ethanol, butyrate, and butanol 
in mM units at the end of fermentation. Condition numbers with (*) ’s indicate data from [30], while data from the other conditions is from [29].  

No Gas Comp. % 
CO/CO2/H2/N2 

Flow Rate (mL/min) Trial Number of Time Points Final Concentration (mM) 

Acetate Ethanol Butyrate Butanol 

1 20/15/5/60  20  1  11  20.0  
32.7 

4.6 16.1      

2  11  24.1  
29.7 

5.8 25.5 

2 20/15/25/40  20  1  10  32.8  
78.4 

7.0 24.5      

2  10  27.8  
83.0 

5.9 26.1 

3 20/35/25/20  20  1  11  44.2  
76.1 

5.9 15.3      

2  11  44.1  
108.9 

3.5 10.0 

4 40/15/25/20  20  1  11  17.8  
63.9 

1.4 3.7      

2  11  25.4  
57.6 

3.1 11.9 

5 20/15/5/60  5  1  7  43.1  
9.2 

10.1 3.6 

6* 50/37.5/12.5/0  1  1  12  30.1  
36.7 

8.2 14.8      

2  12  49.0  
13.7 

12.5 4.9 

7* 50/37.5/12.5/0  10  1  10  26.3  
74.0 

2.8 11.2      

2  10  27.1  
61.4 

2.2 7.2 

8 40/15/25/20  5  1  12  38.3  
28.0 

6.8 6.6 

9 20/20/0/60  20  1  7  50.5  
38.4 

12.3 10.7 

10* 50/37.5/12.5/0  20  1  10  30.3  
21.9 

5.1 4.1      

2  10  32.2  
68.6 

3.6 7.6  
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exhausted. Syngas composition and gas flow rate varied based on the 
experimental conditions described in Table 1. Artificial oxygen-free 
syngas was provided from gas cylinders, and a system of Alicat mass 
flow controllers mixed the gases. A built-in Applikon Bioreactor 
condenser and cold trap placed in an ice bath prevented the loss of the 
vaporized alcohols in the exhaust gas. The captured alcohols were 
accounted for in the total alcohol production measurements. The growth 
of the P7 strain was measured using optical density of the culture 
(OD660) that was correlated with the dry cell weight. Syngas fermenta-
tion products (acetate, butyrate, ethanol, and butanol) were determined 
using a gas chromatography (GC) system equipped with a flame ioni-
zation detector (FID). 

2.2. Fermentation data collection and transformation 

Ten different syngas fermentation conditions were used to test the 
productivity of Clostridium carboxidivorans P7 (Table 1). The data is 
sourced from two previous reports: Conditions 1–5, 8, and 9 [29]; 
Conditions 6, 7, and 10 [30]. Compositions 5, 8, and 9 each had one 
trial, while the others had two trials. In sum, this work used extracellular 
product concentration data from 17 fermentation runs (data/ex 
perimental_data.csv in this project’s GitHub repository: https://github. 
com/garrettroell/SyngasMachineLearning). 

The time-course concentration data was preprocessed to smooth 
concentration curves, to increase the number of time points for training 
and testing, and to calculate production rates at each time point. Since 
the time intervals between experimental measurements were not uni-
form, the time-course data was smoothed and interpolated to get con-
centrations every 0.1 days using a second-order Savitzky–Golay filter 
[22]. A parity plot comparing measured and smoothed data can be seen 
in Supplemental Fig. 1. Points from the first 24 hours of fermentation 
were not considered for training or testing data since cell growth in this 
period was driven by glucose and not syngas [30]. From the beginning of 
day two, the rate of concentration change for a given metabolite (unit: 
mM/L/day) was calculated by subtracting its current concentration 
from its concentration 0.1 days earlier and dividing by 0.1. After these 
transformations, the number of pairs of input and output instances 
increased from 176 to 836. Conditions 1–7 were used as training data, 
and “unseen” conditions 8–10 were used as test data. Data leakage was 
avoided by preventing data from a single condition from being in both 

training and testing data sets. 

2.3. ML model construction and parameter estimations 

We formulate our problem as a regression problem and thus the ML 
models are regressors. Seven families of them , namely, neural networks 
(NNs), support vector machines (SVMs), random forests (RFs), elastic 
nets (ENs), lasso regressors (LAs), k-nearest neighbors regressors 
(kNNs), and Bayesian ridge regressors (BRs), were used to make pre-
dictions for the rate of production of ethanol, acetate, butanol, and 
butyrate. The input features for these models were the gas condition 
(flow rate in mL/min, % CO, % CO2, % H2, and % N2) and the current 
concentration of the measured extracellular metabolites (ethanol, ace-
tate, butanol, and butyrate in mM, and biomass in g/L). Twenty- 
eight ML models that each had ten features were trained (4 outputs × 7 
types of regressors) (Fig. 1). 

Well-tuned hyperparameters are important for ensuring strong per-
formance from machine learning models. Following the common prac-
tice, we did cross-validation-based grid searches to find the optimal set 
of hyperparameters for each of the seven machine learning approaches. 
For each run of the cross-validation-based grid search, a model’s per-
formance was evaluated based on its predictions on a subset of training 
data that was held out as a validation data set. Any two runs of the cross- 
validation were independent and hence there was no information 
leakage. The hyperparameters used for each model were:  

• For NNs, the number of layers ranged from 1 to 4 with a step of 1, the 
number of neurons in any layer ranged from 20 to 100 with a step of 
20, the activation functions included tanh (tangent hyperbolic) and 
ReLU (rectified linear unit), and the maximum number of iterations 
was set to 5000. 

• For SVMs, the kernel was RBF (radial basis function), and the con-
figurable parameters, C, epsilon, and gamma, had values that ranged 
from 10− 5 to 105 logarithmically with a step of 10.  

• For RFs, the number of estimators ranged from 10 to 200 with a step 
of 10, the maximal depth ranged from 2 to 40 with a step of 2, and 
the maximum number of samples per tree ranged from 5 % to 50 % of 
total samples. 

Fig. 1. Outline of machine learning methods. Data from 10 gas conditions (17 trials) is split into training and testing data. The model inputs are shown on top 
(brackets indicate concentrations), and the model outputs are on the right. Each box on the right represents a model trained using a specific ML algorithm for a 
specific output. Condition numbers with (*) ’s indicate data from [30], while data from the other conditions is from [29]. 
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• For ENs, the alpha value ranged from 10− 10 to 1010 logarithmically 
with a step of 10, and the L1 ratio ranged from 10 % to 100 % with a 
step of 10 %.  

• For LAs, the alpha value ranged from 10− 5 to 105 logarithmically 
with a step of 10.  

• For kNNs, the number of neighbors ranged from 1 to 30 with a step of 
1, the size of the leaves ranged from 5 to 50 with a step of 5, the 
nearest neighbors were computed using Ball Tree and KD Tree, and 
samples were weighted based on distance.  

• For BRs, the number of iterations was either 300 or 500. The shape 
parameter for the alpha parameter of the Gamma distribution, the 
inverse scale parameter for the alpha parameter of the Gamma dis-
tribution, the shape parameter for the lambda parameter of the 
Gamma distribution, and the inverse scale parameter for the lambda 
parameter of the Gamma distribution all ranged from 10− 1 to 101 

logarithmically with a step of 10. 

All other hyperparameters used the default settings from the scikit- 
learn package. The models were evaluated using R2 as reported by Sci-
Py’s linregress module. The code to run these algorithms is written in 
Python using the scikit-learn library [39]. The code used to generate the 
data in this paper can be found at https://github.com/garrettroell/Syn 
gasMachineLearning. In summary, the seven ML approaches were cho-
sen for analyzing syngas fermentation data because they are highly 
representative of many types of ML algorithms that are widely used [8]. 
In particular, RFs, SVMs, and NNs are the three families considered the 
most accurate by the ML community. 

2.4. Concentration curves generated from concentration rate predictions 

The following method was used to generate time-course concentra-
tion curves from models that predict concentration rates. Concentrations 
of acetate, ethanol, butyrate, and butanol were determined using the 
formula Ct=1 =Ct=0 + 0.1 *Rc, where C0 is the current concentration, C1 
is the concentration 0.1 days in the future, and Rc is the ML-determined 
rate of concentration change with units (mM/day). This process was 
repeated until the generated curves reached the last time point of the 
experimental data. For conditions with two trials, the average of the two 
initial concentrations was used as the starting concentration for each 
metabolite. The time step of 0.1 days was chosen to match the time step 
of the smoothed data. The plots and calculated metrics compare the 
average experimental concentrations with the predicted concentrations. 

2.5. Concentration curves generated from direct concentration predictions 

For reasons explained in Section 2.2., our approach predicts con-
centration rates rather than concentrations directly. However, we also 
perform ML for direct concentration using time as model input: 

f(N2,CO,H2,CO2, flowrate, time) =

(biomass, acetate, butanol, butyrate, ethanol). The results are presented in 
Section 3.2. The predictions in this section are made with models trained 
on smoothed data. 

3. Results and discussion 

3.1. Time-course extracellular metabolite concentrations 

Fig. 2 illustrates a typical profile of metabolite accumulation in 
syngas fermentation with Clostridium carboxidivorans P7. For the first 
24 hours, glucose was the initial primary carbon source, and in this 
growth stage, small amounts of acetate and ethanol were produced. 
After 24 hours, syngas became the primary carbon source, and the 
product profile changed considerably. The fermentation was acetogenic 
for approximately 1 day, and in this phase a large amount of acetic acid 
was produced which caused the pH of the culture to drop. The sol-
ventogenic stage began roughly 48 hours after the start of the 

fermentation. Consistent with previous reports, under solventogenic 
conditions, the bacteria reassimilated the acetic acid and converted it 
into ethanol, butyrate, and butanol [33–37]. 

3.2. Direct concentration predictions using time as a feature 

We first used time along with gas composition and gas flow rate to 
predict product concentrations directly (Fig. 3). After training ML 
models using seven families of algorithms (NNs, SVMs, RFs, ENs, LAs, 
kNNs, and BRs), we found these models had poor performance on the 
unseen test data, with the R2 values on average around 0.2. These results 
indicate that the direct use of ML to predict syngas fermentation time- 
course data is not feasible due to the variable length of lag phases and 
differences in inhibitory responses (i.e., the use of time as an ML feature 
gave unreliable results). Specifically, this method requires full time- 
course concentration predictions, so it could not account for batch-to- 
batch fermentation variations such as differences in the length of lag 
phases. In the next section, we transform the concentration data into rate 
instances and develop ML models to predict product formation rates 
rather than product concentrations to address this issue. 

3.3. Metabolite production rate predictions using current metabolite 
concentrations 

The seven ML approaches were used to predict metabolite produc-
tion rates from ten input features (i.e., gas flow rate, gas composition, 
product concentrations, and biomass concentration). Generally, the 
models fit training data better than testing data. NNs, RFs, and kNNs fit 
acetate and ethanol training data very well (R2 >0.93), while SVMs, 
ENs, LAs, and BRs were less accurate (R2 < 0.63) (Fig. 4). For unseen test 
data, RF offered the most accurate predictions for acetate production 
rate (R2 = 0.62), while NNs had the lowest accuracy with an R2 of 0.14 
(Table 2). The other five algorithms showed similar accuracy with test 
set R2 values ranging from 0.23 to 0.43. For ethanol production rates, 
NNs gave the best predictions (R2 = 0.21), and kNNs made the least 
accurate predictions (R2 = 0.03). The other five models had similar 
performance on the test set (R2 ≈ 0.15). The predictions for ethanol were 
considerably less accurate than acetate due to the complex factors 
governing ethanol synthesis. Compared to acetate, ethanol synthesis 
requires extra enzyme steps and an additional reducing equivalent 
(Supplemental Fig. 2). Additionally, ethanol is mainly synthesized 
during a later fermentation stage (solventogenesis) when cells are 
reassimilating acetate into ethanol. Since this stage is dependent on the 
amount of acetate produced in acetogenesis, it was more difficult to 
predict. 

Fig. 2. Example time-course fermentation data. There were two time-course 
data sets for composition 2 (20 % CO, 15 % CO2, 25 % H2, and 40 % N2) 
(Table 1). The points represent the average concentration of each metabolite, 
and the error bars are the standard deviation between the measurements. 
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The seven families of algorithms were also applied to predict the 
production rates of butanol and butyrate (Fig. 5). The predictions of C4 
production rates by NNs, RFs, and kNNs reached R2 > 0.91 for the 
training data, while SVMs, ENs, LAs, and BRs had lower quality fits. For 
butyrate production rate prediction, SVMs performed the best for un-
seen test data (R2 = 0.53), and kNNs performed the weakest (R2 = 0.37). 

All models provided relatively poor predictions for butanol synthesis. 
SVMs were the top performer of all the models with an R2 of 0.29 
(Table 2). The trend of acid prediction being more accurate than alcohol 
prediction continued for the four-carbon products. 

In addition to R2, root mean squared error (RMSE) and mean abso-
lute percent error (MAPE) were used to evaluate the accuracy of rate 

Fig. 3. Test set R2 values from the direct prediction of product concentrations using time as a variable.  

Fig. 4. C2 product synthesis rate predictions (observations vs. predictions). The blue dots represent predictions of training set rates, and the orange dots represent 
predictions of testing set rates. The x-axis is the observed rate, and the y-axis was the predicted rate, so points that fall on the 45◦ line through the origin represent 
accurate predictions. The unit in all scatterplots is mM/day. The values in the legends of each plot are the R2 value for that data series. RMSE values for each plot 
could be seen in Supplemental Fig. 3. 
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predictions. Based on RMSE values, random forests showed the best 
accuracy as they were the most accurate for acetate and butyrate and 
showed above average performance for ethanol and butanol (Table 2). 
For acetate and ethanol, random forests performed the best with MAPE 
values of 10.8 % and 3.2 %, respectively (Supplemental Table 1). MAPE 
values were not able to be computed accurately for butyrate and butanol 
because when the true values were very small, minor prediction errors 
had very large absolute percentage errors (>108). 

3.4. Using rate-based ML models to predict time-course fermentation 
concentrations 

The production rate models were used to generate time-course 
concentration curves starting with the initial experimental concentra-
tions and iteratively calculating the concentrations based on the current 
concentrations and rate predictions. Fig. 6 shows the curves generated 
by SVMs, RFs, and NNs for the test set gas compositions. These figures 
are a subset of the figures generated. Time-course curves for each con-
dition generated by each algorithm can be found in Supplemental 
Fig. 5–14. SVMs and RFs were chosen for this figure because they were 
the best performing algorithms for rate prediction. kNNs were chosen 
because they demonstrate an example of how overfitting can lead to 
poor test set predictions. The curves generated by SVMs and RFs were 
accurate with average test set R2 values of 0.78 and 0.87, respectively. 
These algorithms performed the best at predicting rates, so their accu-
rate curve predictions are expected. 

Supplemental Table 2 contains the R2 values for each algorithm 
when predicting concentration curves. Interestingly, the top-performing 
algorithm for the test set, RFs, was more accurate with the test set than 
the training set. The top-performing algorithm for the training set was 
kNN, but kNNs were among the lowest performers for the test set. kNNs 
had an excellent fit for composition 10 but a poor fit for composition 9 
(Fig. 6). The variability can be explained by kNN’s dependence on 
training data closely matching the testing data. Composition 9 was 
unique since it did not contain hydrogen gas, and as a result, kNNs made 
poor predictions for this condition. Additionally, the poor performance 

of the NNs for composition 9 was likely because NNs were overfitted due 
to their large number of parameters. Both issues could be resolved with a 
more extensive training data set. 

3.5. The comparison of different ML algorithms for syngas predictions 

The seven families of regressors exhibited different performance 
patterns across products and prediction methods (Table 2, Supplemental 
Table 1, and Supplemental Table 2). For test set rate prediction, RFs 
performed the best, and SVMs were a close second. Both algorithms had 
average R2 values of ~0.35 for rate predictions. ENs and LAs performed 
somewhat well with average R2 values of ~0.30, while NNs, kNNs, and 
BRs had the worst average performances with R2 values of ~0.25. ENs 
and LAs are relatively simple algorithms with fewer fitted variables than 
the other ML methods. Since the linear methods outperformed kNNs and 
NNs, it can be concluded that kNNs and NNs were overfitted. Despite 
NN’s overall poor performance, it offered the best predictions of ethanol 
production rate. Since an algorithm could have large variability in 
performance across products, the selection of ML algorithms should be 
made only after testing multiple options [8]. Syngas fermentation is a 
highly nonlinear and dynamic system, so complex ML algorithms (e.g., 
NN) risk poor fits to unseen test data if training data is insufficient. In 
contrast, the simpler ML algorithms, ENs and LAs, are ‘safer’ options 
because they have less fitted variables, making them less likely to 
overfit. Moreover, BR showed average to below average performance 
relative to the other six algorithms (Table 2 and Supplemental Table 1). 
In general, Bayesian methods perform better for larger sets of data where 
each feature is assumed to independently contribute to the probability of 
other features. However, the data in this study was limited, and poten-
tially some of the model features may have had a dependence on one 
another (e.g., acetate consumption is directly linked to ethanol pro-
duction during syngas fermentation). 

This research found that data transformation (concentrations → 
rates) improved ML quality. The rate predicting models generated time- 
course product curves that closely matched unseen experimental data. 
For example, SVMs, RFs, LAs, and ENs provided predictions with R2 

Table 2 
Comparison of performance of the six ML algorithms. The average column shows the algorithm’s average R2 ± standard deviation of R2.  

Algorithm Explanation of Method  Performance on Test Sets 

Metric Acetate Ethanol Butyrate Butanol Average value 

Neural Nets A collection of layers of ‘neurons’ that can be activated or not 
determines output. 

R2 0.142  0.219  0.505  
0.176 

0.261 
± 0.144 

RMSE 19.15  11.23  2.84  
4.03  

Support Vector Machines A high-dimensional plane, constructed using a kernel function, is used to 
determine outputs. 

R2 0.433  0.119  0.526  
0.290 

0.342 
± 0.154 

RMSE 20.48  13.04  2.71  
3.29  

Random Forests An ensemble of decision trees is used to predict outputs. R2 0.639  0.155  0.459  
0.198 

0.363 
± 0.197 

RMSE 10.28  11.15  1.53  
3.29  

Elastic Nets A regularized linear method that constrains its fitted variables using L1 

and L2 penalties. 
R2 0.371  0.168  0.419  

0.277 
0.309 
± 0.096 

RMSE 12.64  12.24  1.66  
3.68  

Lasso regressors A regularized linear method that constrains the sum of its fitted 
variables. 

R2 0.312  0.167  0.421  
0.277 

0.294 
± 0.091 

RMSE 17.94  12.35  1.66  
3.68  

K-Nearest Neighbors 
algorithms 

A method that returns the average value of the k most similar points 
found in the training data. 

R2 0.324  0.026  0.367  
0.177 

0.224 
± 0.134 

RMSE 13.97  13.55  2.03  
2.83  

Bayesian Ridge regressors A method that uses a probabilistic approach to make regression 
estimations 

R2 0.233  0.169  0.413  
0.279 

0.273 
± 0.090 

RMSE 21.46  12.31  1.65  
3.62   
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values of ~0.8. This improvement could be explained by three reasons. 
First, the rate predictions used product concentrations as features, so 
inhibition effects and product status could be incorporated into ML 
training and predictions. Second, fermentation processes had different 
lag phase time lengths, so the data transformation avoided time as ML 
input and reduced its feature uncertainty. Third, by taking advantage of 
the known base concentrations at the starting time, the rate-based ML 
models could predict time-course concentrations well. 

This study had two limitations. One issue was that data trans-
formation caused dependence among rate values from temporally close 
data points because production rates were derived from smoothed time 
series curves. As a result, the same prediction error was often repeated, 
leading to low R2 values. For example, in kNN’s predictions of acetate 
production rates, underestimations were observed for ~20 consecutive 
samples (Fig. 4). Second, the ML approach had poor predictions of 
alcohol production rate, suggesting additional features were needed to 
capture the metabolic phase shifting during fermentation. 

3.6. Feature importance analysis and biological insights 

The RF models were used to determine the relative weight of the gas 
components when predicting the production rates of the four products 
(Fig. 7). The importance of a gas’s concentration on a metabolite’s 
production rate was determined by averaging the impurity reduction 
when the gas value (as a percentage of total gas composition) was used 
to split the decision trees [39]. In this context, feature importance offers 
guidelines for steering syngas fermentations towards desired products. 
Specifically, the metabolic network in syngas fermentation was 
controlled by complex host-product-substrate interactions with multiple 
input substrates and output products [33], and large amounts of energy 
molecules are required to make the products (Supplementary Fig. 2) [5]. 
In industrial applications, fermentation engineers prefer to produce C4 
products over C2 products since butyrate and butanol are more valuable 
than acetate and ethanol. Feature importance analysis shows that bu-
tyrate’s production rate was heavily dependent on the concentration of 
CO in the feed gas and that butanol’s production rate was mainly 
dependent on the concentration of H2. These findings offer control 
strategies to optimize syngas compositions to create specific products 

Fig. 5. C4 product synthesis rate predictions (observations vs. predictions). The blue dots represent predictions of training set rates, and the orange dots represent 
predictions of testing set rates. The x-axis is the observed rate, and the y-axis is the predicted rate, so points that fall on the 45◦ line through the origin represent 
accurate predictions. The unit in all scatterplots is mM/day. The values in the legends of each plot are the R2 value for that data series. RMSE values for each plot 
could be seen in Supplemental Fig. 4. 
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Fig. 6. Concentration curves generated from rate predictions. The solid lines represent experimental data, and the dashed lines represent predicted data. Blue 
= ethanol, orange = acetate, gray = butanol, yellow = butyrate. The x-axis is time in days, and the y-axis is concentration in mM units. 

Fig. 7. Feature importance of gas composition on metabolite production. The size of the bar indicates the importance of that gas for determining the production rate 
of the labeled metabolite. 
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[35]. The feature analyses also showed how ML could use limited 
experimental data to ‘relearn’ biosynthesis patterns. 

4. Conclusion 

This study evaluated seven families of machine learning (ML) algo-
rithms to predict syngas fermentation production rates and time-course 
product concentration curves based on limited fermentation trials. 
Time-course predictions based on rate predictions were more accurate 
than direct concentration predictions. Generally, the ML methods were 
more accurate for acid production rates than for alcohol production 
rates, indicating that the features used in this study did not capture all 
the factors that determine alcohol production rate (e.g., metabolic shifts 
or other intrinsic biological factors). Random forests and support vector 
machines gave the best rate predictions and generated accurate time- 
course concentration curves. Additionally, feature importance analysis 
reaffirmed guidelines for how gas composition can control product 
profiles. Future studies can build off this work by increasing the amount 
of syngas fermentation data, including new features to capture cellular 
regulation and stress responses to bioreactor conditions, or by applying 
an ensemble machine learning approach. The advancement of machine 
learning is a promising route for facilitating model predictive control to 
optimize fermentation outcomes [18]. 
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